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L?>-INDEX THEOREMS ON
CERTAIN COMPLETE MANIFOLDS
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1. Introduction

Corsider a Riemannian manifold A, Hermitian vector bundles E and
F over M, and a first order elliptic differential operator D: C*(E) —
C>™(F). Such operators arise naturally from the Riemannian structure
like the Gauss-Bonnet and the signature operator; more generally, one can
consider the Dirac operators in the sense of [10]. Being a differential
operator, D has closed extensions D mapping the Hilbert space Z'(D)
(with the graph norm) to Lz(F ). In particular, there is the closure D,
and the maximal extension D__ = (D, )", where D': C*(F) — C*(E)
is the formal adjoint. If M is complete, then D, = D_, for all Dirac
operators. Moreover, if M is compact, then D__  is a Fredholm operator,
and its index is given by the celebrated Atiyah-Singer index formula. In
general, D may or may not have a Fredholm extension. In this work we
deal with a class of operators which need not be Fredholm but have a finite
L*-index in the sense that kerD N L*(E) and ker D"N L*(F) both have

finite dimension; then we define
(1.1)  L*indD:=dimkerDn L’ (E) - dimkerD' N L (F).

We will also assume that M is complete and D, =D . . Thenif D_,
is Fredholm, we have indD_, = L*-ind D, but our assumptions will not
imply the Fredholm property. Note that if D has a finite Lz-index, then
a closed extension D is Fredholm if and only if the essential spectrum
0,(D"D) of the self-adjoint operator D' D has a positive lower bound.
Still, the situation which we treat should be regarded as a type I case in
the sense of [13].

Our model case is a complete manifold with finitely many ends which
are all warped products. It follows from simple examples that the L%
cohomology for such manifolds can be infinite, so we need a condition
on the warping function f (formula (2.14) below) which allows at most
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linear growth. Then we observe that a geometric operator D on a warped
product has a particularly simple normal form, as an operator valued ordi-
nary differential equation (cf. (2.3) and (2.4)). This allows us to construct
a weight function g with the property that gDg is a Fredholm operator,
even if D is not. Moreover, gDg is unitarily equivalent to a regular sin-
gular operator in the sense of [5], which enables us to compute the index
of all closed extensions. This means that we produce a normal form, for
the weighted operators, which does not involve the warping function any
more. On the other hand, we introduce boundary conditions for gDg (in
most cases), but it turns out that we always have a very natural choice.
Moreover, the transformation avoids the analysis of boundary integrals.
To obtain an index formula we have to relate the L’-index of D to the
index of a suitable closed extension of gDg . Whereas it is easy to see that
under our assumptions the L*-index is always finite we do not succeed in
computing it in all cases. It seems that the difficulty arises whenever D
is itself not Fredholm and the operator S, occuring in its normal form
has small eigenvalues. The structure of the index formula is as follows.
It contains interior terms, involving the geometry of the whole manifold,
the spectral invariants of the cross-section such as the n-invariant, and the
global contributions which can be expressed in terms of the solutions of
an ordinary differential equation R, (cf. Theorem 4.3).

We derive an abstract version of the described geometric situation, al-
lowing for perturbations.. Then the most definite result is Theorem 4.3.
We apply this to various geometric situations and obtain a unified and
sometimes more general treatment of the known results in these cases.
It may be of interest to note that we also obtain nonlocal contributions
for the L’-index of the Gauss-Bonnet operator similar to the conic case
treated by Cheeger and, more completely, in [5] {cf. Corollary 5.4).

The plan of the paper is as follows. In §2 we introduce the class of
operators to be considered. Then we reduce the problem to an index
calculation for a regular singular operator in the sense of [5] by introducing
a suitable weight function. The necessary analysis is carried out in §3
and we prove the index theorem in §4. §5 contains the applications to
manifolds which are asymptotically warped products.

List of notations.

M, C M is a compact manifold with boundary (cf. (2.1));

H is a Hilbert space, and H, C H is a dense Subspace;

E and F are Hermitian vector bundles over M ;

D: Cy°(E) — Cg°(F) is an elliptic first order differential operator;
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D': C;°(F) = C°(E) is the formal adjoint;

D, =gDg is a weighted operator obtained from D;

D,=gD'g;

#=L"EM)oL'R,, H), # =L*FM,)e L*R,_, H);

Z = [HE\M)eL*([0, 11, H), Z' = L*(F|M,)&L*([0, 1], H);
X is the bounded operator on LZ([O, 1], H) defined by X f(x) =
xf(x).

2. The class of opei‘ators

The class of operators which we consider is suggested by the example of
warped products. Therefore, we describe first the model situation in some
detail. Thus assume that A is complete and that there is an open subset
U C M such that

(2.1) M, := M\ U is a compact manifold with boundary,

U is isometric to (0, co) x N with metric
(2.2) g= a’y2 + f(y)ZgN, where N = 9M, is (compact)
Riemannian with metric g, .
Then it is a matter of calculation to obtain unitary representations of the
geometric operators on U as simple ordinary differential operators with
operator coeflicients; this is, of course, done by separating the canonical
variable y on (0, co). We will present a general scheme for this in a
future publication. For the time being we simply mention two important
examples which will suffice for our applications.
Example 1. Assume m = dim M = 0 mod 2. The Gauss-Bonnet op-
erator
Dgpi=d+6: Q% (U) - Q" (V)
is unitarily equivalent to
1

(2.3) 8 +f( )(S +8,): C, (0, 00) , H)) — Cy ((0, 00) , H) ,
where

H:=L*(A'N), H:=H(A'N),
(2.4) Sy:=dy+6y: H —H,

n

S, )= 1 diag (1 (/- 3)) ... -

and »n:=dim N (cf. [5] for more details).
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Example 2. Assume m = 0mod 4 and denote by Qi(U) the =+1
eigenspace of the involution 7 on Q(U) given by multiplication with

Vv —lm/2+j U=h, on ¥ (U). Then the signature operator

‘ Dy=d+8: Q" (U)— Q™ (U)
is unitarily equivalent to an operator of the form (2.3), where H and H,
are as in Example 1, but

Sy 1= (=) (e dy—dye ) o
(2.5) forw e Q' (N),

S, ) = 1 (v) diag (/2 = o< -
Again, more details can be found in [5].

In the spirit of [4], [5] we introduce an abstract version of these exam-
ples. We assume again (2.1) and consider a first order elliptic differential
operator D: C™(E) — C*(F) on M. We replace (2.2) by the following
assumption. » o ‘

There is a Hilbert space H with 1sometr1es .

®,: LYE|U) — L*((0, 00), H), ®: L*(F|U) — L*((0, ), H)

such that @, (DF induce 1somorphlsms

Hy (E[U) =~ Hy ([0, 00) , HINL? ((0, 00) , H,) ~ H, (F|T).

Moreover, there is a self-adjoint operator S, in H with

domain Z(S,) := H,, a smooth function (0, c0) 3 y
(2.6) S, () ei’(Hl, H), aposmve function f¢& C°°(R ),and

smooth functions

0, oo)ayHAj(y)ee?(H)ﬂi”( D J=1,2,

such that for u € C;°((0, 00), H,) and y € (0, o), we

“have 1
DD u () = A, (1) 8,4, (1) u )+ 7555 (S + Sy () u ().

A Dirac operator on a complete manifold has a unique closed extension
[10, Theorem 5.7], so it is reasonable to assume

(2.7) D =D_

max
This implies that the L*-kernel and L’-cokernel of D are respectively the
kernel and cokernel of the unique closed extension. In what follows, the
unique closed extension will also be denoted by D . From (2.6) we derive
unitary isomorphisms

©: L*(E) — L? (E|M,) & L* (0, 00) , H) = 7

(28) / 2 2 2 .
@': L*(F) - L (F|M,) ® L*((0, o0) , H) =: 7,



L*-INDEX THEOREMS ON CERTAIN COMPLETE MANIFOLDS 495

and the domain < (D) of D can be identified with a subspace of # . In
order to localize the analysis on U, we want to multiply by C* functions.
Asin [4]weput CT(R,):={p € C®(R")|¢ is constant near 0 and near

o} . For p € C”(R") and u=(u,, u,) € #" we define
ou=(p©O)u,9,) e,

and require that

(29) " pu =50y

for some § € C*(M), with g € C;°(M) if ¢ € C;°[0, o). Clearly,
elements u = (u,, u,) of & (D) will have to satisfy a “transmission con-
dition” at N = 9M,. To formulate it we observe that for u € HOI(E)
with ®u = (u,, u,), and for v € H)(F) with ®'v = (v,, v,) we have

(2.10) . w|N=07'u|N, v |N=0;'v|N

Now we define the “boundary space”

(2.11) |

9, = {ue Li (10, 00), H)) N Hy ([0, 00), H) N L*((0, o), H)

'+ 3(S, + S, )u e L0, 00), )}

and we obtain that
2 (D)=H'(EIM,) ®, 2,

(2.12) i}
= {(u;, u,) € H' (EIM,) © Z,u|N = @5 'u,IN}.

It is easily checked that in the above examples the assumptions (2.6), (2.7),
and (2.9) are satisfied. In addition, there is a Hermitian vector bundle G
over N such that

H=1*G), H = H'(G),

S, is a symmetric first order elliptic differential operator
(2.13)  on C*(G), and

S,(») is a smooth family of first order differential opera-
tors on C(G).

(2.13) will not be necessary for most of our arguments.
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In the setting just described we now proceed to derive an L*.index
theorem. This will not hold without further restrictions on our data as can
be seen from the example of the Gauss-Bonnet operator for rotationally
invariant metrics in R” (cf. [6]). It will be necessary to have

o S
which will follow if we assume

(2.14) f')=a+o0(l) asy— oo, forsomea > 0.

Moreover, S, is thought of as a small perturbation of §,, which is ex-
pressed by
(2.15)

IS, ) USol + 07|, +[[USol + DT 8,0 =0 ) asy — .

Finally, A, and A4, have to be close to the identity in the following sense:

pio J00) (0=, o) (r-],

=o(l) asy—ooofori=0,1, j=1,2.
Remarks. (1) From (2.14) it follows that

(2.17) f(y)=ay+o(y) as y — oo.

(2) Being elliptic on a compact manifold, S, has a discrete spectrum.
For a > 0 we may replace f by af and §,, S| by aS,, oS, without
changing the assumptions (2.14), (2.15), and (2.16). Thus we may assume
that

(2.18) 0<a<1 and+1! ¢ specsS,

which will make it possible to apply the analysis of the next section.

(3) All our conditions are translation invariant, i.e., invariant under the
change of variable y— y+ R, R>0.

Under these assumptions we are going to show that the L*-index of D
is finite, and we will obtain an inequality for it which, in some interesting
cases, is an equality. Set ‘

Y du
A
and let g € C*(M) be a positive function such that

(2.20) g =f)e"? for y sufficiently large,

(2.19) F (y)’ =
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using (2.9). A convenient way to construct g2 is as follows. Select y, >0
and choose y =y, € C*(R) such that

0<y<l1, y(¥)=0 ify <y,, w()=1 ify>2y,
Then put
(2.20") g =(1-w)W) fO) +wf(y)e™

and Z|M, := £(0)"/*.
Lemma 2.1. lim, , _ f(y) = oo, the function

(2.21) s(y) = /oo gc(i:;)z
y

is a diffeomorphism (0, oc0) — (0, s(0)), and for y sufficiently large we
have

(2.22) s@)=e "V,
Moreover,
(2.23) ¥ Cgo((O,S(O)),H)BuHéuOSGCf((O,OO),H)

is unitary with respect to the obvious L?-structures.
Proof. For y large by (2.20) we have

I
o

S(y)=/ fa e T Wau=e"",
¥y

thus
' 1 1
(2.24) s (y)= —g2 o) = —f(y)s(y) < 0.

From (2.17) and (2.18) we conclude that for y sufficiently large

(2.25) F(y) >logy*+C

for some C € R and some ¢ with & > 1, proving that s: (0, o0) —
(0, 5(0)) is a diffeomorphism. That @ is unitary is obvicus from the
definition. qg.e.d. '

Next we define a first order elliptic differential operator C;°(E) —
Cy (F) by
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and study its transformation under ¥. If u € C;°((0, s(0)), H,), then
Yue C;°((0, ), H,) and

D¥u(y) = g ()[4, (0)8,4, () + £ ()" (Sy+ S, )] wos ()
=g [ 0)5 ) 4,4, )i 05 ()
+(£211) ) (So + 5, 00) + 4, £ 4, () o s ()]

= ¥T,u(y).

Using (2.24) we obtain

T,u(x) = [—AlAz os™ (x)8, +a(x) (SO +805" (x)
(2.27) +A, fdyos™" (x))] u(x)
= — [31 (x)0,B, (x) +a(x) (50 + §1 (x))] u(x),

where we have written

(2.28a) B/ (x)=A;0s" (x), Jj=1,2,
(2.28b) S, =-S5,

(2.28¢) | S (x)==8, 05" (x),
(2.28d) (g /f)os "(x).

By (2.24), f/g’(y) = s(y) = x for y large; s0 §,(x) = —Sy(s”'(x)) =
—=S8,(y) for x small. It is apparent from (2.27) that Dz satisfies simi-
lar assumptions as D but now the boundary operator T, is the model
operator for conic singularities as treated in [5]. Somewhat surprisingly,
we will be able to reduce the index calculation for D to this case. The
relevant analysis of such operators will be carried out in §3. Assuming for
the moment that all closed extensions of D; are Fredholm (this will be

proved in Theorem 3.3 below) our aim is to compare L*-ind D with the
index of a suitable closed extension of D. It follows from (2.20) that

=172 2 (14" )/ S ) du

g =Ce for large y,
so that by (2.14)
(2.29) 7 'el™® W),
Thus the map
(2.30a) B: L*-kerD> f g 'fekerDs

2, max
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is well defined, and obviously linear and injective. Slmllarly, we have a
linear injective map

(2.30b) B L -ker D' — ker D,

2, max’
Thus we obtain ‘ , : :

Theorem 2.1. Under conditions (2.14) and (2.15) D has a finite L*
index.

We want to obtain a formula for L*-ind D . The first task is to construct
a suitable closed extension of D_. We define the space

(2.31) Wi= |2 (Dg o) N8 if]/@( 2 min)
and the operator | o
(2.32) Dy =Dy 1|2 (Dg ) V&7

To see that this makes sense we need
-1
Lemma 22. Z(D; . )CZ(D; ., )Ng Z.
Proof. We only have to show that gu € # .if u € (D )z min) OT
gu, € L? (R,, H). Now u, = Yw, for some w, € L? ((0, 1), H), and,
by Lemma 3 2 and (3.11) below, u € Z(D. _. ) implies

£, min
[ (x |¢|H=o(<x|logx| ), x-o

But gu, = ¥(gos™'w,), so by (2.24)

SN2 P
(g057) ) flw, )5 =0 (fos™" (x) llogx])
Now for large R it follows from (2.22) that

S(R) o0
| resT logxidx = [ e PGy dy,
0 R

and (2.25) implies the convergence of the integral. So gu, =
‘P(gos“lwb)eLz(R H). qed ‘

Thus & (D; w) 1is all uin & (D max) such that gu € # . We will
show below (Theorem 3.4) that D; 1s a closed Fredholm extension of

D_ with index
(2.33) ind D;  =ind D; + dim W.

2, min

On the other hand we have
Lemma 2.3. With f, B’ defined in (2.30a,b) we have

B (L*kerD) =kerDy ., B (L'-kerD') CkerDj -
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Proof. If v € Lz-kerD, then B(v) = g ve 9,(D§’max) ng '#;
hence B(v) € ker D; . Conversely, if ue kerD; ., theh v = gu €
ker DN, so B is bijective. .

Consider next v € L’>-kerD’; by (2.30b) we know that f'(v) €

ker D§ max 20d to obtain g'(v) e Z (DS ) it suffices to show that for all
ueI(D; y) -

(2.34) (Dgu, B (v)) = (u, DB’ () =

Now

(Dgu, i3 (v)) = (DZu, v)
and gu € # by construction. By interior regularity we may assume in
(2.34) that u = (0, u,). Choose ¥ € C;°(R) such that

) {1, vl <1,
YIS0, pixe,

and put ¥, (y) := w(y/n). Then we find

(Dgu, v) = /O " (Dguy) . v (), dy

= lim oo('Dgu(y),t//,, Mv)ydy

n—00 0
(o <]

lim [(gu ), ¥, ) Dv (),

R—00 0

+Xgu(y), ¥ (/m)v )] dy
= 0.

Hence the proof is complete. q.e.d.
We can treat D' in the same way; we introduce

W' = [ (Dy ne) NE' 7] /2 (D, mm)v

and
Dl . =Dy |9( ) N8

Z,max

which makes sense by Lemma 2.2 apphed to D'. Applymg Lemma 2 3to
D’ we obtain

(2.39) indD, ,, < L*indD < —ind D} ,
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In general, it seems quite difficult to compute L*-ind D in terms of D,
[ 8,,and S,. Ind D~ w can be computed by the methods in {5], and
this w1ll be carrled out 1n §4. Thus the problem lies with the difference

(2.36) hy:= L-indD —ind D, ,,
= dimker D5 , — dim L’-ker D'
= dimker D; , —dimkerD ..
Writing
(2.37) hy :=dim W

we have by (2.33) and (2.36) the following index theorem:
Theorem 2.2. Assume conditions (2.1), (2.6), (2.7), (2.9), (2.14), (2.15),
and (2.16). Then D has a finite L-index given by '

2. .
(2.38) L*indD =ind Dy, +hy+hy.

A priori, s; depends on the choice of g. We have, however,

Lemma 24. For i =0, 1, h; is the same for all positive g € C™(M)
satisfying (2.20) for sufficiently large y .

Proof. By (2.31), W, and thus ho, is independent of g ; for g is
fixed for large y, and a change of g in a compact set does not affect
g (D7 max) > Z (D min) » g_l% or indD; ,,s0 A, is also independent.
g.e.d.

To obtain a more exphcnt formula we have to compute the various terms
in (2.38). This will be done below for ind D_ and A, whereas we have

mm
only an inequality for 4, . We will show, however that h, = 0 in many

interesting cases; thus we arrive at a satisfying I*-index theorem.

3. Regular singular operators

The operators DE introduced in the previous section belong to the class
arising from the study of conic singularities (cf. [5]). Though their proper-
ties are quite analogous to our assumptions on D above, we write them out
explicitly for convenience. Thus let M be a Riemannian manifold, not
necessarily complete, let £ and F be Hermitian vector bundles over M ,
and let D: C* (E) — C®(F) be a first order elliptic differential operator.
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We assume again (2.1) but we replace (2.6) by the following assumption:
" théreisa Hilbert space H w1th a dense subspace Hl and
isometries CI) cLYE|U) > ((O 1), H), <I) : LA(F|U) >
L2((0, 1), H) such that <I>E , d> induce isomorphisms .
H, (E|U) = H, (0, 1), H)nL? (_( 1), H)) = H, (F|T).
Moreover, there is a self-adjoint operator S, in H with
domain 9(§0) := H,, a smooth function (0, 1) > x +»
S,(x) € Z(H,, H), and smooth functions '
(0,1)>xm B,(x) €L (H)NZ (H)), i=1,2,
such that for u € C§°((0, 1), H) and x € (0, 1),
q> DO u(x) = (x)a B, (x)u(x)+x“ (§‘+§ (x))u(x)..

(3.1)

As before we think of S asa perturbatron Thus we require an estlmate
similar to (2.15):

(ISO| +1 '

We also need the analogue of (2 16):

(3.3) ” (x2,) ( )” +“ (x0,) ( (x)_l)“H“
. L =0,(1)_ asx—»Oforz_O land j=1, 2.

(3.2)

” |S'+ ) 1(")H=0(1) as x — 0.

As in (2.8) we derive unitary isomorphisms
& LY(E) - L*(EIM)) @ L*((0, 1), H) := 7,
O L(F)y - L (FIM,) @ L* (0, 1), H) = 7.
We need furthermore the analogue of (2. 9) we put c~ [0 1] = {(p e’
C™[0, 1]l¢ is constant near O and 1} and define for u = (u,, ub) e
ou=(p(1)u,, ou,) e 7.
Then we require that ‘
(3. 4) . ‘ ’&)(/)— ou (pq)(/) L,

for some 7.€ C (M), with, € CO(M) if ¢ € C°°(0 1]. Flnally, we
have again for u € Hé(E) with ®u = (u;, u,), and v € H0 (F)- with
'y = (v;, vy) : : : : S

(3.5) w|N=8'u|N, v |N=8 'y [N
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Operators D satisfying the above assumptions will be called regular sin-
gular. Thus the geometric operators on manifolds with conic singularities
are regular singular (cf. [5]) but also the weighted operator D introduced
in §2. The analysis of [5] has to be extended since we allow much weaker
perturbations. This has to be paid for by assuming that either

(3.6a) £l ¢ specS,

r :

fm,) ”§1<x>(;§0.+1)“” (3] 1) S0 =
and

aso -0, 4 (50-1), =0l ,>,

: . - : rasx —=0,j=1,2,
for'some & > 0. This is not a restriction in deahng ‘with D_ in view of
(2.18). Do

We start our 1nvest1gat10n -of the closed extensions of D with' the ‘ob-
servation that
. D (D) = (E(M)ea 2, |
Ta
= {( ub)eH (ElM)eB@lu |N (D ublN}

where

o~

(3 7b) gb = {ueLloc ((0, 1] ’ Hl) loc((O 1] H)ﬂL ((0 1) )‘
. x B Bu(x)+x" (S48 (0)ux) e L2 (0, 1), D)}

In what follows we identify D with Do .

To construct a boundary parametrix we introduce

(3.82) 0of 0= [0 s dy. s
a8 AW [ o rody,  s<i,

and note that
(3 +X—IS) P = (a -+ X—ls) P =I.
From .Lemma 2.1 in [5] we have the followmg estimates for x € (0 1)
and fe L0, 1): ‘
(3.9a) _
1/2 1/2
[P f ]+ [Py as )] < 2625 4 7 NAe s > -4,
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(3.9b) |Pl,_1/2f(x)’ <e(xllogx)? ifx<x(e), foralle>0.

Lemma 2.2 in [5] has to be extended to include the case 8 = —1, at the
expense of loosing the e-decay.
Lemma 3.1. In LZ(O , 1) we have the norm estimates

(3.10) [|x7'p, ,

+”P1,_SX_1‘ <ls+471, s> -1,

(3.10b) ”)(“P1 . !

In LZ(O,e), 0<e<1, wehave for 6 >0
51 §—1
(3.100) | X77'P, |+ ||By, X
Moreover, P07 s and Pl,—s are compact for s > —%.
Proof. The proof follows as before from Schur’s test, with p(x) =
g(x) =x""? (cf. [8)). By [5, (2.8)], P| _ =P, ,, and P, _ is Hilbert-

,—S
Schmidt for s > —% , thus P, ~and P, _ are compact for s > —% .

In what follows it is convenient to rewrite the operator in (3.1):
—1 /=~ ~
B, (x)9,B,(x)+x "' ($,+5, (x))

+ |7y, X

, =5

l§|s+%[_l, s< -1

'§£J|s+%—(5|_l, s<6 -4

= B,B,(x)d_+x' (§0 +8, (x) + xB, B, (x))
(3.11)  =B,B,(x) [ax +x7! (50 + (B;‘Bl" (x) - 1) 5,
+B;'B]'S, (x) + xB; "B 'B, B, (v))]
= B(x) {ax +x7! (50 +5, (x))] .

It follows from (3.2) and (3.6) that §‘ satisfies either (3.2) or (3.6b)
whereas B satisfies (3.3b).

Now we define an extension 50 of D asa restriction of 5max to the
domain

{u e (ﬁmax) X"'§u, € L2((0, 1), H)

(3.12)
ity ()l = o ((x logx)?) as x — 0}

We will show below that 50 = bmin , which in general differs from 56
introduced in [5). The corresponding boundary parametrix is now

(3.13) = @ P, D P,

sEspecg0 : sEspec S,
s>—1/2 s<—1/2
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Repeating the proof of Lemma 2.3 in [5] and using (3.9) and (3.10) we
obtain

Lemma 3.2. If v € C(;x’(—l, 1), then wPF, maps Lz((O, 1), H) into
(D). N

Lemma 33. If u = (u;, u,) € Z(D,) with u, =0 and u,(1) = 0,
then ' N

POB"Du =u+ POX_ISlu.
Proof. Denote by (es)SESpecg an orthonormal basis of H - satisfying
0

Sye, = se, (with a slight abuse of notation in the case of multiple eigen-
values) and put

(3.14)  h(x):= (6)c + x‘1§0) w(x) =B ' Du(x)— xS, (x)u(x),
hence h € Lz((O, 1), H) by definition of 50. Proceeding as in Lemma
2.4 of [5] we obtain

ug(x) = (u(x),e)="P h(x) foralls.

Now if s > —1 we find

o
u (x)= P, h(x)=—x° /0 ¥, () dy + Py b, (x)

=cx "+ Py h (x),

0,s'"s
using A € L*. Since lu(x)lig = 0((x|10gx|)1/2) , x — 0, it follows from

(3.8) that ¢, = 0, so u = Pyh = PyDu— P,S,u and the lemma is proved.
Lemma 3.4. Thereis 0 < e <1 suchthat for ¢, w € C;°(—¢, €) with
wo =9 and u € Z (D)

(3.15) ou = y PV Dypu
for some bounded operator V in Lz((O , 1), H). As a consequence,
(3.16) lox~" (|30] + 1) o] < € | Buou.

Proof. Note first that pu e & (ﬁmax) by (3.7a,b), hence pue & (50)
by construction. Then the proof differs from that of Lemma 2.5 in [5]

only in so far that P, X -'s , is not necessarily bounded in L?. But for
ue 9(50) we have

~ n+l ~ n ~
(y/POX_lSl)() pu=yP, (WX_'S,POX) X" 'S,pu,
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where y € C§° (—e, &) with yw = ¥, and hence by iteration -
- 13 7o
pu=yPxy (—WX SlPox) B f
j=0
1 13 o-1E
+ (-1 wP, (I/IX_ S1P0x> X S pu

By Lemma 3.1 and assumption (3.2) or (3.6b), ||y/Xf1§lP0x|| <1lif eis

sufficiently small, and X -1 QU € L by definition of D . So we reach
the same conclusion.  g.e.d.
Recalling that Dpu = pDu + C,u for some bounded operator C

—~

# , we obtain exactly as in [5] from Lemmas 3.4 and 3. 1, and from (3 8)
,Lemma 35, . DO is a closed operator.
Theorem 3.1. D Dmln :
Proof. Since D0 is a closed extension we have D ) D It re-
mains to show the reverse 1nc1u51on If ue (D ) and VRS C °°[O, 1]
with w(0) = 0, then yu € Z(D (D min) DY interior regularlty Therefore,
it is enough to prove the following: if u € & (DO) there is a sequence

() pen € Z(D,,) such that

(3.17a) u, — pu in # for some pE C§°(—1, 1) with ¢ = 1 near 0,

(3:17b) : (Dun)neN isa Cauchy s¢quence in 7.

Now we proceed as in [4, Theorem 6.1]: choose ¢ € C(‘)’o (-1, 1) with
0<¢p<1and p(x)=1if [x] <1/2, put

a, = (logn)"l/2 , n>2,
and let
W, (x) =X (1 —@(rX)@(X) s Y, (X) =, ()~ W, (X).
Then we put %, := y,u and unm = t//nmu such that Qn EQ(Dmm) and

satisfies (3.17a) n > 2. Tt remains to show that HDu

tends to zero
as m>n— oco. Now ‘ ‘

nm”;?'
B 5

-~ v et

y/ntu—l—t// Du“ <C‘




L*-INDEX THEOREMS ON CERTAIN COMPLETE MANIFOLDS 507

For 0<d <1 we have

‘ s
a2/ x2 Mogx dx = Zn 520 logd — 1520
0 2 4

n
logd 1\ 210g6/010gn)'2
= ~——-——1/7 —_— Z e .
2(logn) : :

so this term is uniformly bounded in 0 < § < 1 and »n > 2. Moreover,

2 (U7 261 s o —2a,-2
n / X7 logxdx = — 5———=n " Tlogn — ———=n "
0 2a, +2 (2a, +2)
e—2(logn)'/2

: =0(l) asn-— oo .
Combining these estimates with (3.11) and the obv1ous fact that

. 1 .
I

o lm : t//,,,,,,(X) | X)IIH dx =0

for all 6 € (0, 1], we arrive at '

2

’ .
e PEL

lim
n,m—oo

as desired. q.e.d.
Since we have only used that |u(x)||, = o(x l/2| logx|1/2 if ue 9(50)
we thus obtain
Corollary3.2. D(D_. )= {ue DD )lu(x)ly = o(x"*|logx|""*)}.
_If (3.6a) holds, then we can replace “ o(x 1/leogx|'/2) by “ O(x 1/2)
Now we are ready to deal with the Fredholm propemes of D

Theorem 3.3. Dmm 2 (Dmm) — #' is a Fredholm operator.
Proof To show that D is Fredholm it is enough to construct a
rlght parametrix for D min and Dmm; since D and D' have the same

structure it is enough to deal with D . So we have to construct an operator
Pe Z(F ,#) with P(Z") c 2(D mm) and ;

DP=I+K, Kcompactin}i”\’;'.
Since D is elliptic, we have interior parametrices, i.e., given ¥, ¥ €
Cy (M) with = 1 in a neighborhood of suppy we can find com-
pact operators P, € Z(L*(F), L}(E)) and K, € Z(L*(F)) such that
P,(L*(F)) C Hy(E) and ' o

(3.18) ~ DP,=y+K,.

1/2
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Now let ¢ be sufficiently small and choose ¢ € C;°(—¢, €) with ¢ =1
in a neighborhood of 0. Put y =1 — ¢ and pick ¢ € C;°(—¢, &) such
that ¢ =1 in a neighborhood of supp ¢ . Define

1

P:=0P,& "' +PB 'p.
By (3.11) and Lemma 3.2, P € Z(#Z , ) with P(#') c (D_,).
Moreover, - S

DP=y+®K, & ' +9+@BRB '9p+¢X 'BS PB 'y
=1+K+¢Xx 'BSPRB 'p=I+K+R
By (3.18) and Lemma 3.1, K is compact in Z . If ¢ is sufficiently small
we conclude from (3.2) or (3.6b) and Lemma 3.1 that ||R|| < 1. Putting
P:=PI+R) " and K:= KI+R)™" we obtain DP = I + K which
completes the proof. -qg.e.d. _ ~
Next we study the closed extensions of D besides D_, .

Theorem 3.4. The closed extensions of D are all Fredholm operators,
which correspond bijectively to the subspaces of the finite-dimensional space

‘9( max) /‘9( mm) = %
Moreover, denoting by DW the closed extension corresponding to the space
W c W, we have '

indD,, = ind D_,_ + dim W,

Proof. The proof of Theorem 3.3 actually works for every closed ex-
tension of D . Hence all closed extenswns of D are Fredholm operators.
Thus it follows that W, = & (Dmax) 1< (Dmm) is finite-dimensional. If
W C W, isan arbltrary subspace we obtain a closed Fredholm extension

w by resmctmg D nax (O the inverse image & (D y of W under the
pro_lectlon Z( max)_ W . The inclusion map i, : < (Dmm) — (D ( w)
is then Fredholm with ind iy, = —dimW  and from D_, =D
find ‘

OlW we

indl~) =indD_. + dim W. q.e.d.

min
In §4 we will use the following facts.
Lemma 3.6. Put

(3-19) : Pmax = @ PO,S ® @ Pi,S'

52172 s<1/2

If u=u, e:@; and ¢ € C;°(—1, 1), then we have
(3.20) PmaxB~15(ou‘ =qpu+ PmaxX_1§1¢u.
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Proof. We use the notation introduced in the proof of Lemma 3.3. It
follows from Lemma 3.1 that P_, X —1§l is bounded in L. Setting

h(x) = B"' Dou(x) - X', pu(x)

we have

((pus)'(x) +x—1s¢us (x)=h,(x),
(0, 1], hence from gpu (1) =0
pu (x) =P h (x), x €(0, 13.

1,5"s

2
where hs €L,

Now if s > 1, then we have P h € L? by (3.2) or (3.6b) and Lemma
3.1. Thus

1
X fo Why () dy =Py b (x)= P, h (x)=0

since the right-hand side is in L’ , but the left-hand side is in L’ only if
the integral is 0.
Lemma 3.7. Let Q be the orthogonal projection in H onto

P ker(S,—s)

|s|<1/2

and assume that
(3.21) “x“ (Q§1 (x) - S, (x)Q>“=0(1) as x — 0.
Then for ¢ € Cy(—1, 1) we have
0(I-0)F,cZ (D) -
In particular, D hés a unique closed extension if Q =0.
Proof. For u =u, € 2, we have

B 'Dp(I-Q)u=(I-0Q)B 'Dou+x" (Q§1 —§,Q> ou,

so o(I - Qlu e ,@; by (3.6b) and (3.21). Observe that in view of (3.13)
and (3.19), (I - Q)P_,, = Fy(I — Q). Multiplying (3.20) by I —~ Q from
the left and letting [ := B_lﬁqpu € L? we find

PI-Q)f=¢(U~Qu+P(I—-Q) X 'BS pu

By Lemma 3.1 we have D(x) := F,(I — Q)x_lgl(x) bounded in H, and
from (3.2) it follows that :

|D(x)|=0(l) asx — 0..
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Hence if. ¢ has sufficiently small support, we obtain as in the proof of
Lemma 3.4 that _ :
p(I-Qu=PWf

for some bounded operator W in Lz((O, 1), H). Thus the assertion
follows from Lemma 3.2. q.e.d. ‘

We remark that (3.21) is always satisfied if §1 (x) commutes with @

for x near O; otherwise it is a decay condition on the perturbation S |-

4. The index formula’

Theorem 2.2 will be made more explicit in this section by computing
ind Dz iin - This will be done by a Fredholm deformation to an operator
with computable index, using essentially the methods of [5]. To do so it

is convenient to introduce the following assumption: . : i
(4.1) (26)wehaveS() OandA()—Az() IforynearO

Note that this assumption has also been used in [1] and is satisfied if M
has the product metric near 9M,. In concrete situations, however, it is
easy to remove (cf. §5).

Now construct g2 by (2.20") and s by (2.21). Using (2.23) and (2.27)
we find that D- m transforms unitarily to an operator 7 in # with
boundary part - ' '

~B,0,B,+a (S, +5,
= BB, [-9, +a(SO+(

in

(4.2)

= ~B [ax +a (§0+§1> L8y =-S,

Here B,, B,, S1 ,and a are given by (2.28) which implies (3.2), (3.3),
and (3.6a). Note that , ' -

B, (x)=B,(x)=1I, 8§ (x)=58,(x)=0 nears(0),
and that : o . :
1 X near 5 (0) ,
a(x)= {
1/x, X near 0.

We can now apply the results of §3 to T, with obvious modifications due
to the fact that xa(x) # 1 in:(0, s(0)]. Thus with & as in (3.12) we
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see that Dg, mi

mn

is unitarily equivalent to 7 with domain =
2(T)=H'(E|M)) &, %,,
(4.3) o ‘ o~ : —,
(u,, u,) — <f(0)Dui, -B [8x +a (SO+S1>] ub) ex .

. We now introduce
(4.4)

a= g 3 (60,000, + [0 20 - .

05+ 07 B0+ S o 0sl+ 07 ]

Theorem 4.1. Assume (2.1), (2.6), (2.7), and (4.1). If 4 <'A(So)’ then
edch of the operators v P .

T, 9 (T)=#, o .
(u,, u,) +—> (f(Q)_Dui, %Ba'[ax +_‘a (§0'+ dgl)]_ u_-b)
is a Fredholm opefatér where aelo, k 1] and B, (x) = aB(:Jr) + (1— a)l .

. Moreover, the function [O 1120~ T e Z(@(T), #') is continuous.

In particular, \ S
ind7 =ind 7.

Proof. For shfﬁciently small 4, B (' x) is a continuous family of in-
vertrble operators on [0, 1] x [O s( )]. To prove that T is well deﬁned
and contmuous in a itis thus enough to prove that aS L. is contlnuous
on Z(T). Now from (the proof of) Lemma 3.4 we obtain (3.16) for all
9 € Cy (-s(0), s(0)) if A(so) is small enough. Since §( x) = 0 near

s(0), the desired continuity follows from (3.2) and (3.16).: ' ’

It remains to show that each T is a Fredholm operator. As. remarked
above, (4.1) implies that for some J €.(0, s(0))

(4.5) T.u=Tu forallue P (T) with suppu, N (0, 5]1=0

Choose ¢ € Cy°(—s(0), 5(0)) with ¢ =1 in a neighborhood of [-4, J]
and y € C°°( —5(0), s(0)) with wg = ¢ . Since D— is elliptic, we can find
an operator P e (% Z(T)) and a compact operator K, € =z (% )
such that ‘

(4.6) T,P,=TP,=(1-9)+K,.
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Denote next by P, the boundary parametrix for 9, + a§0 , as constructed
in (3.13). Then we find

_ - = 1
T,(-¢P,wB,') =¢-B,9'P,uB," —aaB,S,¢P,B]

(4.7)
=19+ K, +aR,.

By Lemma 3.1, K{ is compact in &(#") and |R}|| < 1 if A(S,) is
sufficiently small. Hence

-1 ) T
T, (Pq)—(prl//Ba ) =I+K,+K, +aR = I+K" +R",

o

(4.8) 1

d (Pw*("Pb‘/’B;1) (I+R) ' =I1+R*(I+R) " =I1+K"

o

Thus we have constructed a right parametrix for 7. To complete the
proof we have to construct a right parametrix for T; , too. But our as-
sumptions imply that T; is also regular singular, and the parametrix just
constructed maps into the minimal domain. q.e.d.

We proceed to compute the index of 7, using the heat kernel method
as in [5]. The only modifications in the argument arise from the fact that
xa(x) # 1. With the notation in [5, Theorem 4.1] we have

Theorem 4.2. Assume (2.1), (2.6), (2.7), (2.9), and (4.1), and let A in
(4.4) be sufficiently small. Then Dy in is Fredholm with

indD; . = /M @y + 3 (n(S,) — dimker S;)
1

— > dimker(S,~5) =Y o Resng (2k).
—1/2<s<0 k>1
Proof. The closed extensions of T,= TO,min are classified by the sub-
spaces of the space

Wy= @D ker(S,-5s),
‘ |s]<1/2
as in [5, Lemma 3.2]. The “Dirichlet extension” T, , constructed there

corresponds to
W= @ ker(S,—s),

—1/2<5<0
SO
(4.9) ind7y=indT, ;,— > dimker(S,~s).
—1/2<5<0 '

It remains to determine the constant term, S(y), in the asymptotic
expansion as { — 0 of

(4.10) try (e”ToeTos — e~ huTos) = F, (1),
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for various choices of . Choose 0 < s, < s, < s(0) such that g° o
s_l(x) = f(0) for x €[s,, s(0)] and a(x) = x~! for x e (0, s,]. Then
choose x; € C; (—s,,5;), ¥, € C*(0,s(0)) such that y, = 1 in a
neighborhood of 0, and x, + x, = 1 in a neighborhood of [0, s,], and
put x;:=1-x-x,-

If we let x = x5 in (4.10), then we obtain, by unitary equivalence with
DE , that the constant term equals

B (x3) = /M73“’D’

where ), is the usual index form. The proof of Lemma 4.4 in [5] shows
next that

(4.11) B (%)) = 5 (1 (Sy) — dimkerSy) — > " a; Resng (2k).
k>1

For the remaining coefficient, f(x,), we use [3, Theorem 4.1] to find that
B (12) = € (xy) Res g, (0).

It is readily seen from the explicit formula for C(x,) that we can increase
C(x,) without affecting B(x;) or B(x,). Thus we conclude

(4.12) Blr) =0 Blt)=[ wp

Combining (4.9), (4.11), and (4.12) yields the theorem.
Corollary 4.3. We have

(4.13) ind D =1ind D

g, max g, min

+ Y dimker (S, —5s).

|s]<1/2

Proof. Note that (Dg)’ = (D'); and that Theorem 4.2 applies to -Dg
as well, with S, replaced by —S;. Then we compute, recalling Wy =

=

o

S
I

= ind (—D§,max) =ind (—D';f, min)

= —ind (~D' )

g, min

= /M w,+3(n (Sb) + dimker S;)

i

+ Y dimker (S, ~s) = )_a, Resrg (2k)

0<s<1/2 k>l
=indD; .+ > dimker(S,-s). qe.d.

g, min
|sj<1/2
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Now we turn to the computation of 4, and 4, . Their analysis depends
on the small eigenvalues of .S; and §, . We introduce the orthogonal pro-
jection Q onto the eigenspaces of S, with eigenvalues @l s|<1/2 ker(S,—s)

between —J and 1. By construction, there is s, with 0 < s < 3 such
that
(4.14) specS, N [—3, 3] C [, 5]

We will use Lemma 3.7 so we want the decay condition (3.21) for the
transformed operator obtained from gDZ. In view of (2.23) it takes the
form

415 00|08, 0)-5,000]|=0(1) asy—oo,
and this will be assumed in what follows. Here we have written (cf. (3.13))

D~ A(y) [ay + ﬁy) (S +3, (y))]

with

A(y)i= 4,4, (), |

5,00 = (47 @)= 1) Sy +47'S, ) + 145" 4, ().
We will have to study the reduced matrix operators

(4.162) Dy =8, + /()" (05,0+05,)0) .

. : 1 . _ . :
(4.16b) Dy=-8,+f(»)" (05,0+05,() Q).
For y, y1 > 0"we denote by W(y, yl)\ and Wy, y,) the respective
solution operators, i.e., the matrix functions with '
NN
D W s =0 ’ Z 0’
W n) =1
Lemma 4.1. (a) For y, y, >0 and any s, €(s,, 1) we have
HW(/) v ) )“ < CoIFWFB)]
» V1 = >

where s, 'is defined in (4.14), and F in (2.19).
(b) For y,y, >0 we have

W(y,y) W .y =L
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(c) Let ve C'(R +» QH) be a solution of the equation
(4.18a) D=g¢g'w, wel’R,, H.
Then for y, >0 there is 7,V € QH and v, € CI(R+ , QH) such that

(4.18b) v(y)=Wo . y) v, v+, ),

(4.18¢) Hvyl (y)”2 - o(e‘””).

Moreover, the map v — y, v is linear, and v, v and v, are uniquely
determined by the properties (4 18b) and (4. 180)

Proof. (a) Since W (y y,) solves the equation DQ WQ(-, y,) =0, for
e € QH from (4.16a), (2.15), and (4.14) we have -
(4.19)

|7, (v, y1)€||2 = |lel* + 2/: Re <5nyQ (vom) e wo (v m)e) ay'

<l +2 [ () W () o] @

if s, € (s, %), and y, y, are sufficiently large. Hence the assertion -
follows from Gronwall’s Lemma {cf. [9, p. 24]). The proof for WQ' 'is
analogous.

{b) It follows from a straightforward computation that

= (W)W ) =0

y

(4.20)
(c) We choose y, =0, for simplicity of notation. Then
y
-1
(421) v ()= Wy, 0)v(0) +/0 Wy (v.y) s w () ay.

Since g_lA(y') = f(y )_l/2 B 2 for y' large, we deduce from part (a)
and w € Lz(R QH) that the integrand in (4.20) is in L (R, , QH).
Since Wy(y,» N=w, (y 0),(0, 7'}, we may write

Wy (v, 0) 7pv —/y Wo(v.y) g w () ay
Wo (., 0) v + v, (»).

I

v(y)
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We estimate, again with part (a),

oo O < Woln, o [ £ () | (v )

oo
2 —F(y (25, — )(F(y')=F(¥)) dy . —~F(y)
< ollyg, g /y e =0,

which proves (4.18c).
Now assume a second representation
V() =Wy, 070 +7,(»).
It follows from part (b) that
Tol — 70 = Wy (v, 0)" (v () =T, ()
hence from part (a) and (4.18c) that

6=12F0) _

175 = 7ovff < Ce y = oo.

Thus 7,v = y,v and v, =7,. q.ed.
We can now calculate 4. For some y, > 0 we introduce
K} ={ecouWw" (., y)ec L’} c QH.

Since W(')(y y,) = w (v, yz)W( (v,,¥,), it is easily seen that the di-
mensions of these spaces are independent of y, .
Lemma 4.2. For y, >0 we have

(422)  hy=dimP (D, . )N ' #/F (Dg ) = dimK, .

Proof. We want to construct a linear map y: & (Dg. max) — QH such
that

ker y|Z (D§ max) N g-17/ =9 (Df,min) .

To achieve this, observe first that u € Z(D; ;) if and only if u €
Q(D_,max) and

—F()/2
(4.23) leuly=0(e™),  y-w.

In fact, this follows from the remark after Corollary 3.2 and (2.23). Next
we note that for ¥ € C;°(M) with ¥ =1 in a neighborhood of M, we
have pu € & (D§,min) for u € 37 (Dz max) > bY interior regularity. Also,

(I -0)1 - 9)u € Z(Dg 1) by Lemma 3.7. So it remains to study
Q(1 — @)u := &i. We compute

Dogi(v)=g"'47'QD (1-9)u(v) - 7' Q(CS, - 5,0) gu(»)
=w ),
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with w € L* (R +» ). Hence from Lemma 4.1 we obtain the decomposi-
tion
(4.24) ga(y) =Wy (v, ¥,)7, 808+7(»).

Now choose y, >0 such that ¢(y) =0 if y >y, and define
y(u) =y, 8=y, (§(1-9)Qu) e QH.
Next we want to show that
kery =< (D'g,min) , imy = Kyl'
Let u € kery. Then we obtain from (4.24) and (4.18c)

lga ) =0 (e~ "),

hence &t € & (Dg min) by (4.23) and u € @ (Dg min)- Consequently, if
ue P (D;

Z . min) » from (4.24) and Lemma 4.1(c) we obtain

y () =Wy (v, ) (gt () -5 ().

If we substitute the above equation in the estlmates (4.23) and (4.18c¢),
and use Lemma 4.1(a) we obtain for y > y,

WWHSCe“””“~o, y — o,

hence y(#) =0 as claimed.

It remains to show that imy = Ky . Pick e € K and ¥ € C(R)

such that y(y)=1 for y > y,/2 and y(y) =0 for y < y,/3. Define

u)=wg " )Wy (y,y)e.

Since y' has compact support and e € K ,wehave ue & (DE max
gue# . It follows that

gu() =Wy (v, y)e+((1-0)v ) -1)Wy(y,»)e
so the uniqueness of the decomposition (4.24) implies

} and

e=y(u. q.e.d

We can make (4.22) even more precise in the following special case
which covers the examples given in §1. Thus we now assume the following:

(4.25) specS, N [-3, 1] ={0},

in (2.6) we have 4, = 4, =1 and §,(y) = f'(y)S1 for

(4.26) some self-adjoint operator in H with domain H, .



520 JOCHEN BRUNING

and gDit = D,u € #', hence 0= (Dit, v). From Lemma 4.1 again we
have

QU= a) =)W (v, y)e+W (),
s0 we obtain, in consequence of (4.30), Lemma 4.1(a), and Lemma 3.7,

0= (D, v) = lim (@(T), v (T))

= lim (W (T, y)e+W(T), W (T,y)e +5(T,3))+0(1)

= <e,e'>+o(1).

Thus ¢ L K which completes the proof. q.e.d.
Let us agam assume (4.25), (4.26), and (4.27). The proof of Lemma

4.3 shows that
= @ Qs K(l) = @ 9,
flel? rlel?
hence in this case

(4.31) L= @ o,
fLrte

which gives as a useful special case

Lemma 4.5. Suppose that f'e L* or f7'€ L? Sforall t #0 and that

= {0} in (4.28). Then h =0.

Note that in the examples of §2, @, = {0} is always satisfied so that
Lemma 4.5 applies.

We combine the results of this section with Theorem 2.2 to formulate
our main result.

Theorem 4.3. Let M be a complete Riemannian manifold, let E and
F be Hermitian vector bundles over M , andlet D: C*°(E) — C*(F) bea
Sirst order elliptic differential operator. Assume conditions (2.1), (2.6), (2.7),
(2.9), (2.14), (4.1), (4.15), and that the constant A in (4.4) is sufficiently
small. Then D has a finite L*-index given by

L*indD = / wp+ 1 (n(s,) —dimkerS,) — > dimker (S, - s)
M, —1/2<s<0
- Z o, Resng (2k) + dim K, +dimim 7.
1 >0
Here w,, is the usual index form, 1 is the n-function associated with the

operator S, in (2.6), and K, and the map t, are defined in Lemmas 4.2
and 4.4 respectively.
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5. Asymptotically warped products

Asymptotically warped products will be studied in this section. By this
we mean a complete orientable Riemannian manifold M with (2.1) and

U is isometric to (0, co) X N with metric

5.1
G- g=dvV + 1) gy ).

Here f is a smooth positive function satisfying (2.14), and g,(y) is a
smooth family of metrics on N = &M, converging to a limiting metric
gy = 8&y(oo) as y — oo. This defines a warped metric g0 = dy2 +
f (y)ng on U. We denote by V and v the Levi-Civita connections
for the metrics g and go, and by w, o’ and Q, Q° the respective
connection and curvature forms. Then we want that with 6 := @ — &°

0
52 swp(|a-g%  F IO, )=o) wy—

Here |- |0 denotes the norm defined by g°. These conditions are enough
to ensure that D, and Dy have a finite L*-index. To obtain a more
convenient formula for ind D; .~ in some cases we will need in addition
that

(53) sup £ (1) 9}, ) = O(1)  asy — co.
p

To handle 4, and #, we will also impose the decay condition (4.15). The
calculations for Dg and D, are almost identical, so we will give proofs
only for the latter operator. We begin by establishing (2.6). We recall first
the method used in [5, §5] for the warped product case (actually only for
f(y) = y, but the generalization is obvious). With ¢ = j—(m-1/2,
m = dim M, we introduce the maps @, 44 Cy (0, ), Q(N)) —
Qev/odd(U) by

(5.4a)
%(Z »; (y)) = 3 (F0)¥ 0y ) + L )5 0y, ) A dY)
jz0 Jjz0
(5.4b)

S (£ 0y ) A dy+ £ ) 0y, ()

j>0

D44 (E w; (y))
j=0
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which define unitary maps between L>*((0, ), L*(A*N)) and
O(Aev /0daU)> where N has the metric g, , and the subscript 0 refers

to the metric g . Thus we obtain as in Example 1 of §2

D4 D5 Py, = Py (4 +6°) D,

(5.5):

where S, and S, are given by (2.3), a > 0 is defined by (2.14), and we
may assume a < | and :i:% ¢ specS,. Now we introduce an endomor-
phism B € C* (End A*U) with the property that

(0, 0) () ={o, Bw,), (D), w,w,eQU), pel.

Here (-,:) and (-, ‘), denotes the pointwise scalar product with respect
to' g and g, respectively. :
Then we find smooth functions B ov /odd € C™((0, ), L(H)NZ(H))),

where H = L* (A'N), H, = (A N), such that

Bq)ev/odd = (I)ev /'oddBev/odd" '

Moreoyer, B, /odd ’satisﬁes (2.16a), i.e

(56)  (1018,) (Bujoss—1)0) =0, asy—oo, j<I.

To see this we choose a local orthonormel frame (ei~) 1<i<m—1 for (N, gn)
such that fo =0/0y, fi:=1 ! e,i>1,i1sa local orthonormal frame

for (U, g ) parallel with respect to v° along the geodesics ) normal to N.
From this frame we construct a local orthonormal frame (f; Jo<i<m—1 for
(U, g) by the Gram-Schmidt procedure. Then it is readily seen that the
coefficients of B, /odd with respect to the frame (f;) are smooth functions
in the variables g;; := (f;, /). But

g (1) = (709 £ 0) = (7 (95 74) 1)
= 3 (O (o) &+ 03 () 84 -
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So (5.6) follows from (5.2).. Moreover, B, Jodd satisfies (2.16b) which
follows from (5.2) and the explicit formulas for the Levi-Civita connection
0 (cf. [11, p. 206]).-Thus we obtain a unitary equivalence

57) —d+5~0_ LB"D B0
. v » - Bc:c{czlq)odd (d + 5) q)evBt;l/z' ;.

Recall that [10, Lemma 5.13] »
. k

where L denotes interior multiplication, and ( fl.) is the local orthonormal
frame for (U, g) constructed above. We write

fk = Zaklfl’
/

and observe that the g,;, are smooth functions in the variables g Then
it follows as above that

i - .
(58)  sup(f(1)8,) (ay—d,) (v, p)=0(1) asy—oo, j<I.

PEN : ‘
Hence we have

- > ayafiL (V - V(},)

kI

-2 aklakl_aklakl)fll_v +5
PN

: 0
=t Z Ay Cppr +Zb1,1’E1,1' +4
PN L

= C+E+6".- L
So we must study the transformation of C and E under ®. Note that

C and E are independent of the choice of frame.
Lemma 5.1. We have -

Ci= ., CO,, € C™((0, ), Z (H)NZ (H,))

il 2ol o

and

10 70) (|0 (|5 +1)”

as y — oo.
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Proof. 1t is enough to prove the assertion locally for each Cj, . Using
the frame (f;) constructed above we have

(V ) fi= Z 011 fk Z 011

If (e, )l<1<m , and (f )0<l<m , denote the respective dual frames, fJ =
dy , we find

(v, =5 )e =1 Ody+> e, iz,

j>1

,(v V5) dy =6 dy+ f ()3 Oe;.

j>1
Thusfor peN and 1<, <---<i <m-1
(5.11a)
0 * *
(V5= V5) e neene
-1 —l gk w -5 *
=) D (=D g el Acnef A ne] Ady
!
r—I ,k  * > * *
+) (D)0 e A Nep A e N,
(5.11b)
v, -v%)er “Ad
(V5= V5)einne ndy
= —_— 0 * .. *
= ((ka v )e. A /\e.)/\dy
+65e A Ae Ady+ [y Zeoe A---AelAe.
1 _]>1 r
Combining (5.4a,b) with (5.11a,b) and (5.2) gives the lemma. q.e.d.
Lemma 5.2. We have, with bij in (5.9),

E:=0_E®,

:boodxag((—l)r)a + f(y )_lboodiag(c)
+Z( we L8, + f(y)” 'be, L diag (c ))

>1

+ £ Z b[,ell_v

LI'>1

=E (08,+ () E, ).
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Here E € C®((0, 00), Z(H)NZ(H,)) with
“E (y)” =0(l) asy— oo,

Hl
H E “ (1) asy—o0, j<1,

and E, e C®((0, 00), Z(H,, H)) with

(80| (S + ) Bw)| <o asy-w.

Proof. The lemma follows by straightforward computations, together
with (5.4a,b), [11, p. 206] and (5.8).
Now we combine (5.7), (5.5), and (5.9) with Lemmas 5.1 and 5.2 to
derive the unitary representation
(5.12)
Dy~ B'*D, B
GB =~ Fodd GB
1/2
=B [(1+E 1),
-l({s , & ~ ~ —172
+ 7 S+ 5 0+ W +E ) B 1)
1,5 = ~ ~ ~1/2
+ 107 o+ 5,00 + FOCW) + B,0)) | B )
2 —1/2
= [Baa ) (T+ B, ) BL* )] o,
+

—[S +Ba0) (3,00 + £ ) C )+ E, ) B )

»)
+ (Bola ) - 1) 8,85 )+ 5, (BL " ) - 1)

VB (827 0)) |

~1/2g,

ev

=48, + 70 (S+85,0)

where S, (y) satisfies (2.15), and A(y) satisfies (2.16). Now we put E :=
AM, F=A M, D:=Dgg=d+7,and
—12\ ! 1/2
CD (cDevB ev ) > CD =B odchodd

Then it is easily checked that (2.6), (2.9), and (2.10) are satisfied. (2.7)
holds since M is complete, and (2.1), (2.14) hold by assumption.

Theorem 5.1. Let D = D, or D = Dg, and assume m = dimM is
even or divisible by four, respectively. Under the assumptions (2.1), (5.1),
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(2.14), and (5.2), D has a finite L?-index, given by

L*ind D .
(5.13) = / w, +/ ap+4(n(S;) - dimkerS,)
M,
Z dlmker( ) ZakResns (2k)+h +h,
—1/2<s<0 k>1

where the various notation of (5.13) is defined as follows. .

(a) wp is the “index form” of D (defined in [5] after (4.32)), equal
to the Chern-Gauss- Bonnel form for Dgp and to the Hirzebruch L, m/a"
polynomzal for D a, p IS the lransgresszon of the characlerzslzc Jorm wp
from v lo ve, where V® is the Levi-Civita connection for lhemelrzc

= dy’ +f( Vgy(0) with f,(y):=ay if a >0, and f,(y):=1if
a= 0

(b) S, is given by (5.5), with S, S, in (2.3) for Dz, and S, Sl in
(2.5) for Dy »

(c) hy and h, are defined by (2.37) and (2. 36). If the decay condition
(4. 15) holds lhen they are given by Lemmas 4.2 and 4.4, respectively. If
g = g “then Lemmas 4.3 and 4.5 apply. '

. Proof. Again, we consider only the case' D = D, . From the above

considerations and Theorem 2.2 it is clear that D has a finite L’-index
given by (2.38). To derive (5.13) we deform the given metric g near d.M|
to the metric g* By the description of Dy .. resulting from (3. 11)
(3.7a), and Corollary 3.2 it is easily seen that this deformation does not
change the index of D; - For the new metric we have (4.1) in view
of (2.3) and (2.5), hence Theorem 4.2 applies. The proof of (5.13) is
completed by recalling the definition of the transgression (cf. [7, Chapter
2.1])." q.ed.

We can now derive extensions of known L’-index theorems in some
special situations. '
- Corollary 5.2 (the asymptotically Euclidean case). Assume M is asymp-
totically warped with f(y) =y, N = S and m=dimM > 2. If(5.2)
holds and

(5.14) g sﬁpj}2|"g|§’;m=0(1) a5y > oo,
then

(5.15)  I™indDg, = hm/ Wgp»
| SRURI <

< R=o00
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and

(5.16) -1ndDS = Rll’n;o <k OPS |

Proof We have a =1 in (2.14), and, in consequence of [5, Lemma
5.1; 12], '

specS n[-3 7 11=2

if m > 2. In view of (2.18) we may thus assume that 0 < a < 1 in (2.14),
and = '
specS Nn[- é, 2] =.
Hence Q = 0.in (4.15),’and /%, = h; =0 by Lemmas 4.2 and 4.4.

-Now let R > 0-and apply our construction and Theorem 5.1 to

MN=MUpeUpp <R}, —{peU|y ) >R}

(cf Remark (3) after (2.16)). Then we obtaln (5 13) with M| replaced by
M1 and hy =h = 0. We want to prove next that

5.17 lim [ a,=0.

( ) . Cp

Observe that in this case the metrics gO and g” coincide on U. Thus,
if Q_ denotes the curvature two-form of the connection sv0+ (1-85)V,
then

s » A
aD=(m—l)/0 P(0,Q,,...,Q)ds,

' where P is the complete polarization of the invariant polynomial defining
wy, (cf. [7, Lemma 2.1.2]) and 6 as in (5.2). Since Q° =0, it follows
from (5.2) and (5.3) that

sup Rm_l|aD‘?R » =0, R— o0,
pesm! ’ . » .
wh1ch implies (5.17). The proof of (5.15) is completed if we compare the
resulting index formula with the formula for M = R™
In the case D = Dg, from 1121, and [5, Lemma 5.3] w1th S = S + S

and S; as in (2.5), as before we conclude that specS nl[- 2, 2] = @.
Hence again s; = 2, = 0 and (5.13) holds. Letting R — oo as before and
comparing again with A = R™ we obtain the assertion (5.16). gq.e.d.
Corollary 5.2 extends Theorem 5.2 in [2], which in turn extends Theo-
rem 1 in [14]. It should be noted, however, that in [2] the case m =2 is
alsotreated but not in [14]. By {5, Lemma 5.1] we have specS N[-%, 31#
@& and consequently Q # 0, so we have to deal with #4, . Note that this is
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not a Fredholm problem since in the asymptotically Euclidean case D,
is not Fredholm in any dimension. We hope to return to this question in
a future publication.

Corollary 5.3 (the cylindrical case). Assume f(y) = 1 in (5.1) and
g=g0 on U. Then

L*-ind Dg = /M1 o, +4 (1 (Sy) - dimkerSg) + 4,

where h, is the dimension of the space of limiting values of elements in the
extended L*-kernel of D; (as defined in [1, p. 58]).

Proof. 1Tt is clear that (5.2) and (5.3) hold and that ag = 0. Thus
Theorem 5.1 applies. By [1, Theorem (4.14)], fs: is regularin Rez > —1,
so all residues in (5.10) vanish. Moreover, since a = 0 in (2.14), we
have §0 = S(') and may assume by the usual scaling that Q = ker56 =
@®,50 H'(N). Furthermore, it follows from (2.5) that (4.15) holds, and
Lemma 4.2 gives i, = 0. To prove the assertion concerning 4, recall the
definition of the extended L*-kernel of D':

L’kerD' = {v eC® (Q‘ (M)) D'y =0, lim v(y):=v

exists in H = L (A*N) andv —v_ € LZ((O, o0) , H)} ,

where we identify v with its image under ®_ in LZ((O, ), H). We
claim that

(5.18) h, = dim {voo|v el? kerD’}.

To see this we show that L kerD' = %, , where %, is defined in
(4.29), and that the map T, in Lemma 4.4 is given by L*kerD' 5 v —
g_l(y)vc>c> € H for all y; then (5.18) follows from Lemma 4.4, Con-

sider v € L*kerD'; we have to show that g_lv € LZ((O, 00), H) and
(Dsu, v) = 0 for all u e L*((0, c0), H) with gDsu € L*((0, o), H).
Since D. =48, + S, we can decompose v in the eigenspaces of S,

A y 0

(5.19) v = Y. e
A€spec S,
Since v € szerD', we have v; = 0 for 4 > 0 and v = v, €

kerS) = Q. Moreover, g(») = ¢’’> so g 'v € L*(0, o), H). Now
consider u as above and assume without loss of generality that #(y) =0
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for y < 1. By assumption and (2.31), g lue Q(Ds,g,w)’ and by
(2.37) and Lemma 4.2, D Tow = Ds = min - Thus Corollary 3.2 gives
lu)ly = 0T = 0(e™'?), and it follows that (Dgu,v) = 0.
Hence L’kerD' C % .

Conversely, if v € ;Z/uf , we have the decomposition (5.19) and only have
to show that v, =0 for A > 0. Fix 4> 0 and put u(y) := ¢(y)vle‘ly
with ¢ € C(R) such that ¢(y) = 0 for y < 1 and ¢(y) = 1 for
y > 2. Clearly, u € L*((0, ), H) and gDgu(y) = g¢'(v)v,e™ €
L*((0, o0), H), hence

< 2 2
0= (Dgu,v) = [~ o' 0 ol dy = [y

Thus L*kerD' =%, . We now recall the definition of the map 7, : intro-
duce y,: Z(Dg 7 m,,) — QH asin Lemma 4.1. Then 7,(v) = yy(g_lv)
since Q = Q,. Choose y, > 0 such that in (4.18a) ¢(y,) = 1 and write
for v €%,
-1
QU =08 vy =vy=W(y,y)v,
Comparing this with (4.18a) we conclude from the uniqueness of y, that
7, v=8(n)7, @)=,

which completes the proof of (5.18). g.e.d.
Corollary 5.3 is Corollary (3.14) in [1]; note the difference in orientation

which leads to 4 = —S; in Theorem (3.10). Finally, we treat the cusp
case.

Corollary 5.4 (the cusp case). Assume (2.1), (5.1), (5.2), and in addition
(5.20) vol’ U < oo
and
(5.21) Ricc’ <0 onU,

where Ricc” denotes the Ricci tensor of the metric g°. Then (2.14) holds
with a = 0 and Theorem 5.1 applies. If g = gO on U, (5.3) holds, and
(5.21) is strengthened to

(5.22) Ricc’ < —&* on U,
then
(5.23) [indDg = lim [ wg+4in(Sp) .,
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